Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(4-Methoxyphenyl)-1-(2-pyrrolyl)prop-2-en-1-one

Dong-Qing Li

Department of Chemistry and Biology, Yulin Normal University, Guangxi 537000, People's Republic of China Correspondence e-mail: ldq00000@126.com

Received 18 July 2008; accepted 7 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.125; data-to-parameter ratio = 15.3.

The title molecule, $C_{14}H_{13}NO_2$, is almost flat with a dihedral angle of 8.0 (1)° between the pyrrole and benzene rings. The central C_3O ketone unit has an *s-cis* conformation and is also coplanar with a torsion angle of -0.6 (3)°. An intramolecular $C-H\cdots O$ hydrogen bond generates an S(5) ring motif. In addition, the methoxy group is coplanar with the attached benzene ring. In the crystal structure, neighboring molecules are paired through $N-H\cdots O$ hydrogen bonds into centrosymmetric dimers with an $R_2^2(10)$ motif.

Related literature

For the pharmaceutical and biological properties of chalcones, see: Lin *et al.* (2002); Modzelewska *et al.* (2006); Opletalova (2000); Opletalova & Sedivy (1999); Sogawa *et al.* (1994). For chalcones as non-linear optical materials, see: Agrinskaya *et al.* (1999); Indira *et al.* (2002). For related structures, see: Bukhari *et al.* (2008); Fun *et al.* (2008); Gong, *et al.* (2008).

Experimental

Crystal data $C_{14}H_{13}NO_2$ $M_r = 227.25$ Monoclinic, $P2_1/c$ a = 5.0815 (7) Å b = 17.172 (3) Å

Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 (2) K

Data collection

Bruker SMART APEX area-	5842 measured reflections
detector diffractometer	2369 independent reflections
Absorption correction: multi-scan	1809 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.019$
$T_{\min} = 0.967, T_{\max} = 0.988$	

Refinement

ŀ

v S

2

$R[F^2 > 2\sigma(F^2)] = 0.047$	155 parameters
$vR(F^2) = 0.124$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
369 reflections	$\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.40 \times 0.24 \times 0.20 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7\cdots O1$	0.93	2.52	2.838 (2)	100
$N1-H1\cdots O1^{i}$	0.86	2.03	2.8314 (17)	155

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Yulin Normal University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2091).

References

- Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). *Phys. Solid State*, **41**, 1914– 1917.
- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bukhari, M. H., Siddiqui, H. L., Tahir, M. N., Chaudhary, M. A. & Iqbal, A. (2008). Acta Cryst. E64, 0867–0868.
- Fun, H.-K., Chantrapromma, S., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, 0956–0957.
- Gong, Z.-Q., Liu, G.-S. & Xia, H.-Y. (2008). Acta Cryst. E64, 0550–0557.
- Indira, J., Prakash Karat, P. & Sarojini, B. K. (2002). *J. Cryst. Growth*, **242**, 209–214.
- Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.
- Modzelewska, A., Catherine Petit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). *Bioorg. Med. Chem.* 14, 3491–3495.
- Opletalova, V. (2000). Ceska Slov. Farm. 49, 278-284.
- Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sogawa, S., Nihro, Y., Ueda, H., Miki, T., Matsumoto, H. & Satoh, T. (1994). Biol. Pharm. Bull. 17, 251–256.

supplementary materials

Acta Cryst. (2008). E64, o1920 [doi:10.1107/S160053680802864X]

3-(4-Methoxyphenyl)-1-(2-pyrrolyl)prop-2-en-1-one

D.-Q. Li

Comment

Chalcone derivatives have recently attracted extensive interest due to possessing a wide variety of pharmaceutical (Lin *et al.*, 2002; Modzelewska *et al.*, 2006; Sogawa *et al.*, 1994) and biological properties (Opletalova, 2000; Opletalova & Sedivy, 1999). Some substituted chalcones also exhibit the potential applications as non-linear optical materials (Agrinskaya *et al.*, 1999; Indira *et al.*, 2002). Considering the importance of these types of compounds, a new chalcone compound was synthesized and its crystal structure is reported here.

The molecular structure of the title molecule (Fig. 1) is almost planar as indicated by a dihedral angle of 8.0 (1) ° between the pyrrole and benzene rings. The central O1/C5/C6/C7 ketone motif exhibits an *s-cis* conformation as usual in other related chalcone derivatives (Bukhari *et al.*, 2008; Fun *et al.*, 2008; Gong, *et al.*, 2008;) and also coplanar with a torsion angle of -0.6 (3) °, meanwhile, O1 atom acts as an acceptor and is involved in an intramolecular C—H…O hydrogen bond (Table 1) to generate an S(5) ring motif. In the crystal packing, the compound can be stabilized by intermolecular N—H…O hydrogen bonds with –NH groups as donors to form centrosymmetric dimers with an $R^2_2(10)$ motif as shown in Fig. 2.

Experimental

The title compound was synthesized by the condensation of 2-acetylpyrrole (1.09 g, 10.0 mmol) and 4-methoxybenzaldehyde (1.06 g, 5.0 mmol) in methanol (30 ml) and ammonia (25%, 25 ml) in the presence of sodium hydroxide (0.56 g, 10 mmol). After refluxed at 358 K for 8 h, the contents of the flask were cooled to give a yellow crude precipitate which was separated by filtration, washed with water and iced ethanol. Recrystallization from ethanol afforded yellow prism-like crystals. Yield: 0.85 g (74.8%).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso}=1.2U_{eq}$ (C) for aromatic and ethylene; 0.96 Å, $U_{iso}=1.5U_{eq}$ (C) for CH₃ atoms, and d(N-H) = 0.86 Å, $U_{iso}=1.2U_{eq}$ (N) for pyrrole nitrogen atom.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level and H atoms as spheres of arbitrary radius.

Fig. 2. Packing diagram of the title structure showing the N—H….O hydrogen bonding interactions.

3-(4-Methoxyphenyl)-1-(2-pyrrolyl)prop-2-en-1-one

Crystal data

C ₁₄ H ₁₃ NO ₂	$F_{000} = 480$
$M_r = 227.25$	$D_{\rm x} = 1.250 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1716 reflections
a = 5.0815 (7) Å	$\theta = 2.4 - 25.8^{\circ}$
b = 17.172 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 13.973 (2) Å	T = 293 (2) K
$\beta = 97.878 \ (3)^{\circ}$	Prism, yellow
$V = 1207.8 (3) \text{ Å}^3$	$0.40 \times 0.24 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker APEX area-detector diffractometer	2369 independent reflections
Radiation source: fine-focus sealed tube	1809 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 293(2) K	$\theta_{\rm max} = 26.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 5$
$T_{\min} = 0.967, \ T_{\max} = 0.988$	$k = -20 \rightarrow 21$
5842 measured reflections	$l = -14 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.124$	$w = 1/[\sigma^2(F_o^2) + (0.0557P)^2 + 0.1497P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
2369 reflections	$\Delta \rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$
155 parameters	$\Delta \rho_{min} = -0.13 \text{ e} \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	-0.2188 (3)	0.56328 (8)	0.38761 (9)	0.0567 (4)
H1	-0.1976	0.5437	0.4448	0.068*
01	0.1957 (3)	0.45435 (7)	0.40994 (8)	0.0707 (4)
02	0.9171 (3)	0.29580 (8)	-0.06480 (9)	0.0769 (4)
C1	-0.0745 (3)	0.54326 (9)	0.31541 (10)	0.0520 (4)
C2	-0.1690 (4)	0.58892 (10)	0.23690 (12)	0.0634 (5)
H2	-0.1082	0.5885	0.1771	0.076*
C3	-0.3705 (4)	0.63554 (11)	0.26280 (13)	0.0707 (5)
Н3	-0.4688	0.6721	0.2238	0.085*
C4	-0.3978 (3)	0.61792 (11)	0.35599 (12)	0.0634 (5)
H4	-0.5202	0.6401	0.3916	0.076*
C5	0.1294 (3)	0.48406 (9)	0.32984 (11)	0.0535 (4)
C6	0.2491 (3)	0.45958 (10)	0.24510 (11)	0.0570 (4)
H6	0.1913	0.4834	0.1862	0.068*
C7	0.4347 (3)	0.40549 (10)	0.24796 (11)	0.0556 (4)
H7	0.4909	0.3835	0.3081	0.067*
C8	0.5616 (3)	0.37631 (9)	0.16757 (11)	0.0517 (4)
C9	0.7403 (3)	0.31532 (10)	0.17995 (11)	0.0578 (4)
Н9	0.7789	0.2930	0.2409	0.069*
C10	0.8645 (3)	0.28594 (10)	0.10527 (12)	0.0586 (4)
H10	0.9827	0.2445	0.1160	0.070*
C11	0.8105 (3)	0.31894 (10)	0.01503 (11)	0.0563 (4)
C12	0.6337 (4)	0.38052 (11)	0.00062 (12)	0.0714 (5)
H12	0.5978	0.4033	-0.0602	0.086*
C13	0.5110 (4)	0.40830 (11)	0.07518 (12)	0.0669 (5)
H13	0.3915	0.4494	0.0639	0.080*
C14	1.0982 (4)	0.23244 (12)	-0.05485 (15)	0.0873 (6)
H14A	1.2445	0.2445	-0.0060	0.131*
H14B	1.1631	0.2235	-0.1153	0.131*
H14C	1.0094	0.1866	-0.0365	0.131*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0611 (8)	0.0626 (9)	0.0479 (7)	-0.0046 (7)	0.0129 (6)	-0.0043 (6)
01	0.0880 (9)	0.0760 (8)	0.0520 (7)	0.0121 (7)	0.0233 (6)	0.0115 (6)
O2	0.0977 (9)	0.0780 (9)	0.0577 (7)	0.0310 (7)	0.0207 (7)	0.0018 (6)
C1	0.0533 (9)	0.0579 (10)	0.0459 (8)	-0.0089 (7)	0.0107 (7)	-0.0036(7)
C2	0.0698 (11)	0.0717 (12)	0.0499 (9)	0.0006 (9)	0.0120 (8)	0.0007 (8)
C3	0.0771 (12)	0.0731 (12)	0.0605 (11)	0.0098 (10)	0.0042 (9)	0.0001 (9)
C4	0.0606 (10)	0.0670 (11)	0.0630 (10)	0.0017 (9)	0.0098 (8)	-0.0132 (9)
C5	0.0581 (9)	0.0570 (10)	0.0468 (8)	-0.0110 (8)	0.0120 (7)	0.0004 (7)
C6	0.0610 (10)	0.0631 (10)	0.0480 (8)	-0.0034 (8)	0.0112 (7)	0.0020 (7)

supplementary materials

C7 $0.0607 (10)$ $0.0594 (10)$ $0.0473 (8)$ $-0.0088 (8)$ C8 $0.0562 (9)$ $0.0501 (9)$ $0.0492 (8)$ $-0.0053 (7)$ C9 $0.0609 (10)$ $0.0617 (11)$ $0.0499 (9)$ $0.0015 (8)$ C10 $0.0583 (10)$ $0.0567 (10)$ $0.0604 (10)$ $0.0089 (8)$ C11 $0.0636 (10)$ $0.0549 (10)$ $0.0507 (9)$ $0.0046 (8)$ C12 $0.0972 (14)$ $0.0701 (12)$ $0.0473 (9)$ $0.0254 (11)$ C13 $0.0855 (13)$ $0.0608 (11)$ $0.0553 (10)$ $0.0232 (9)$ C14 $0.1013 (15)$ $0.0851 (14)$ $0.0779 (13)$ $0.0345 (13)$	$\begin{array}{cccc} 0.0097(7) & 0.0029(7) \\ 0.0084(7) & 0.0006(7) \\ 0.0049(8) & 0.0112(7) \\ 0.0062(8) & 0.0056(8) \\ 0.0096(8) & -0.0014(7) \\ 0.0115(9) & 0.0082(8) \\ 0.0137(9) & 0.0050(8) \\ 0.0212(11) & -0.0047(11) \\ \end{array}$	
C8 0.0562 (9) 0.0501 (9) 0.0492 (8) -0.0053 (7) C9 0.0609 (10) 0.0617 (11) 0.0499 (9) 0.0015 (8) C10 0.0583 (10) 0.0567 (10) 0.0604 (10) 0.0089 (8) C11 0.0636 (10) 0.0549 (10) 0.0507 (9) 0.0046 (8) C12 0.0972 (14) 0.0701 (12) 0.0473 (9) 0.0254 (11) C13 0.0855 (13) 0.0608 (11) 0.0553 (10) 0.0232 (9) C14 0.1013 (15) 0.0851 (14) 0.0779 (13) 0.0345 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C9 $0.0609 (10)$ $0.0617 (11)$ $0.0499 (9)$ $0.0015 (8)$ C10 $0.0583 (10)$ $0.0567 (10)$ $0.0604 (10)$ $0.0089 (8)$ C11 $0.0636 (10)$ $0.0549 (10)$ $0.0507 (9)$ $0.0046 (8)$ C12 $0.0972 (14)$ $0.0701 (12)$ $0.0473 (9)$ $0.0254 (11)$ C13 $0.0855 (13)$ $0.0608 (11)$ $0.0553 (10)$ $0.0232 (9)$ C14 $0.1013 (15)$ $0.0851 (14)$ $0.0779 (13)$ $0.0345 (13)$	$\begin{array}{cccc} 0.0049(8) & 0.0112(7) \\ 0.0062(8) & 0.0056(8) \\ 0.0096(8) & -0.0014(7) \\ 0.0115(9) & 0.0082(8) \\ 0.0137(9) & 0.0050(8) \\ 0.0212(11) & -0.0047(11) \\ \end{array}$	
C10 $0.0583(10)$ $0.0567(10)$ $0.0604(10)$ $0.0089(8)$ C11 $0.0636(10)$ $0.0549(10)$ $0.0507(9)$ $0.0046(8)$ C12 $0.0972(14)$ $0.0701(12)$ $0.0473(9)$ $0.0254(11)$ C13 $0.0855(13)$ $0.0608(11)$ $0.0553(10)$ $0.0232(9)$ C14 $0.1013(15)$ $0.0851(14)$ $0.0779(13)$ $0.0345(13)$	$\begin{array}{cccccc} 0.0062 \ (8) & 0.0056 \ (8) \\ 0.0096 \ (8) & -0.0014 \ (7) \\ 0.0115 \ (9) & 0.0082 \ (8) \\ 0.0137 \ (9) & 0.0050 \ (8) \\ 0.0212 \ (11) & -0.0047 \ (11) \\ \end{array}$	
C11 $0.0636(10)$ $0.0549(10)$ $0.0507(9)$ $0.0046(8)$ C12 $0.0972(14)$ $0.0701(12)$ $0.0473(9)$ $0.0254(11)$ C13 $0.0855(13)$ $0.0608(11)$ $0.0553(10)$ $0.0232(9)$ C14 $0.1013(15)$ $0.0851(14)$ $0.0779(13)$ $0.0345(13)$ Geometric parameters (Å, °) N1—C4 $1.339(2)$ C7—C8	0.0096 (8) -0.0014 (7) 0.0115 (9) 0.0082 (8) 0.0137 (9) 0.0050 (8) 0.0212 (11) -0.0047 (11) 1.459 (2) 0.9300 1.382 (2)	
C12 0.0972 (14) 0.0701 (12) 0.0473 (9) 0.0254 (11) C13 0.0855 (13) 0.0608 (11) 0.0553 (10) 0.0232 (9) C14 0.1013 (15) 0.0851 (14) 0.0779 (13) 0.0345 (13) Geometric parameters (Å, °) N1—C4 1.339 (2) C7—C8 N1 C1 0.250 (12) 0.77 —C8	0.0115 (9) 0.0082 (8) 0.0137 (9) 0.0050 (8) 0.0212 (11) -0.0047 (11) 1.459 (2) 0.9300 1.382 (2)	
C13 $0.0855(13)$ $0.0608(11)$ $0.0553(10)$ $0.0232(9)$ C14 $0.1013(15)$ $0.0851(14)$ $0.0779(13)$ $0.0345(13)$ Geometric parameters (Å, °) N1—C4 $1.339(2)$ C7—C8 V14 C1 $0.222(9)$ $0.0345(13)$	0.0137 (9) 0.0050 (8) 0.0212 (11) -0.0047 (11) 1.459 (2) 0.9300 1.382 (2)	
C14 0.1013 (15) 0.0851 (14) 0.0779 (13) 0.0345 (13) Geometric parameters (Å, °) N1C4 1.339 (2) C7C8 N1C4 1.2000 (12)	0.0212 (11) -0.0047 (11) 1.459 (2) 0.9300 1.382 (2)	
<i>Geometric parameters (Å,</i> °) N1–C4 1.339 (2) C7–C8	1.459 (2) 0.9300 1.382 (2)	
N1C4 1.339 (2) C7C8 N1 C1 2000 (12)	1.459 (2) 0.9300 1.382 (2)	
N1-C4 1.339 (2) C7-C8	1.459 (2) 0.9300 1.382 (2)	
	0.9300 1.382 (2)	
NI-CI I.3699 (19) C'-H'	1.382 (2)	
N1—H1 0.8600 C8—C9		
O1–C5 1.2342 (18) C8–C13	1.394 (2)	
O2—C11 1.3644 (19) C9—C10	1.386 (2)	
O2—C14 1.419 (2) C9—H9	0.9300	
C1—C2 1.380 (2) C10—C11	1.375 (2)	
C1—C5 1.446 (2) C10—H10	0.9300	
C2—C3 1.386 (2) C11—C12	1.384 (2)	
C2—H2 0.9300 C12—C13	1.371 (2)	
C3—C4 1.362 (2) C12—H12	0.9300	
C3—H3 0.9300 C13—H13	0.9300	
C4—H4 0.9300 C14—H14A	0.9600	
C5—C6 1.465 (2) C14—H14B	0.9600	
C6—C7 1.320 (2) C14—H14C	0.9600	
С6—Н6 0.9300		
C4—N1—C1 109.93 (14) C9—C8—C13	116.70 (15)	
C4—N1—H1 125.0 C9—C8—C7	121.10 (14)	
C1—N1—H1 125.0 C13—C8—C7	122.20 (15)	
C11—O2—C14 117.91 (14) C8—C9—C10	122.74 (15)	
N1—C1—C2 106.24 (15) C8—C9—H9	118.6	
N1—C1—C5 121.30 (14) C10—C9—H9	118.6	
C2—C1—C5 132.46 (15) C11—C10—C9	119.07 (15)	
C1—C2—C3 108.04 (15) C11—C10—H10	120.5	
С1—С2—Н2 126.0 С9—С10—Н10	120.5	
С3—С2—Н2 126.0 О2—С11—С10	125.29 (15)	
C4—C3—C2 107.26 (17) O2—C11—C12	115.23 (14)	
С4—С3—Н3 126.4 С10—С11—С12	119.48 (15)	
С2—С3—Н3 126.4 С13—С12—С11	120.59 (16)	
N1—C4—C3 108.52 (15) C13—C12—H12	119.7	
N1—C4—H4 125.7 C11—C12—H12	119.7	
C3—C4—H4 125.7 C12—C13—C8	121.42 (16)	
O1—C5—C1 121.24 (14) C12—C13—H13	119.3	
O1—C5—C6 121.48 (16) C8—C13—H13	119.3	
C1—C5—C6 117.27 (14) O2—C14—H14A	109.5	
C7—C6—C5 123.47 (15) O2—C14—H14B	109.5	
С7—С6—Н6 118.3 Н14А—С14—Н14В	109.5	
С5—С6—Н6 118.3 О2—С14—Н14С	109.5	

C6—C7—C8	127.43 (15)	H14A—C14—H14C	109.5
C6—C7—H7	116.3	H14B—C14—H14C	109.5
C4—N1—C1—C2 C4—N1—C1—C5	116.3 0.86 (18) -178.71 (14)	C6—C7—C8—C9 C6—C7—C8—C13	-175.31 (17) 5.0 (3)
N1-C1-C2-C3	-0.38 (19)	C13-C8-C9-C10	-0.4 (3)
C5-C1-C2-C3	179.11 (17)	C7-C8-C9-C10	179.89 (15)
C1—C2—C3—C4	-0.2 (2)	C8—C9—C10—C11	0.6 (3)
C1—N1—C4—C3	-1.01 (19)	C14—O2—C11—C10	0.2 (3)
C2—C3—C4—N1	0.7 (2)	C14—O2—C11—C12	-179 46 (18)
N1-C1-C5-01	-6.2 (2)	C9-C10-C11-O2	-179.72 (16)
C2-C1-C5-01	174.32 (17)	C9-C10-C11-C12	-0.1 (3)
N1-C1-C5-C6	172.35 (14)	02-C11-C12-C13	179.16 (17)
C2-C1-C5-C6	-7.1 (3)	C10-C11-C12-C13	-0.5 (3)
O1-C5-C6-C7	-0.6 (3)	C11-C12-C13-C8	0.6 (3)
C1C5C6C7	-179.16 (15)	C9—C8—C13—C12	-0.2 (3)
C5C6C7C8	178.75 (15)	C7—C8—C13—C12	179.49 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
С7—Н7…О1	0.93	2.52	2.838 (2)	100
N1—H1…O1 ⁱ	0.86	2.03	2.8314 (17)	155
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.				

Fig. 1

Fig. 2